Discounting and Augmentation in Causal Conditional Reasoning: Causal Models or Shallow Encoding?

نویسندگان

  • Simon Hall
  • Nilufa Ali
  • Nick Chater
  • Mike Oaksford
چکیده

Recent research comparing mental models theory and causal Bayes nets for their ability to account for discounting and augmentation inferences in causal conditional reasoning had some limitations. One of the experiments used an ordinal scale and multiple items and analysed the data by subjects and items. This procedure can create a variety of problems that can be resolved by using an appropriate cumulative link function mixed models approach in which items are treated as random effects. Experiment 1 replicated this earlier experiment and analysed the results using appropriate data analytic techniques. Although successfully replicating earlier research, the pattern of results could be explained by a much simpler "shallow encoding" hypothesis. Experiment 2 introduced a manipulation to critically test this hypothesis. The results favoured the causal Bayes nets predictions and not shallow encoding and were not consistent with mental models theory. Experiment 1 provided qualified support for the causal Bayes net approach using appropriate statistics because it also replicated the failure to observe one of the predicted main effects. Experiment 2 discounted one plausible explanation for this failure. While within the limited goals that were set for these experiments they were successful, more research is required to account for the pattern of findings using this paradigm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When one model casts doubt on another: a levels-of-analysis approach to causal discounting.

Discounting is a phenomenon in causal reasoning in which the presence of one cause casts doubt on another. We provide a survey of the descriptive and formal models that attempt to explain the discounting process and summarize what current models do not account for and where room for improvement exists. We propose a levels-of-analysis framework organized around 2 types of models of causal discou...

متن کامل

Quantum Models of Human Causal Reasoning 1 Running head: QUANTUM MODELS OF HUMAN CAUSAL REASONING Quantum Models of Human Causal Reasoning

Throughout our lives, we are constantly faced with a variety of causal reasoning problems. A challenge for cognitive modelers is developing a comprehensive framework for modeling causal reasoning across different types of tasks and levels of causal complexity. Causal graphical models (CGMs), based on Bayes’ calculus, have perhaps been the most successful at explaining and predicting judgments o...

متن کامل

Spontaneous discounting of availability in frequency judgment tasks.

Discounting is a causal-reasoning phenomenon in which increasing confidence in the likelihood of a particular cause decreases confidence in the likelihood of all other causes. This article provides evidence that individuals apply discounting principles to making causal attributions about internal cognitive states. In particular, the three studies reported show that individuals will fail to use ...

متن کامل

The special status of actions in causal reasoning in rats.

A. P. Blaisdell, K. Sawa, K. J. Leising, and M. R. Waldmann (2006) reported evidence for causal reasoning in rats. After learning through Pavlovian observation that Event A (a light) was a common cause of Events X (an auditory stimulus) and F (food), rats predicted F in the test phase when they observed Event X as a cue but not when they generated X by a lever press. Whereas associative account...

متن کامل

Causal inference in cplint

cplint is a suite of programs for reasoning and learning with Probabilistic Logic Programming languages that follow the distribution semantics. In this paper we describe how we have extended cplint to perform causal reasoning. In particular, we consider Pearl’s do calculus for models where all the variables are measured. The two cplint modules for inference, PITA and MCINTYRE, have been extende...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016